

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		

CHEMISTRY 9701/34

Paper 3 Advanced Practical Skills 2

May/June 2019

2 hours

Candidates answer on the Question Paper.

Additional Materials: As listed in the Confidential Instructions

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name on all the work you hand in.

Give details of the practical session and laboratory where appropriate, in the boxes provided.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

Use of a Data Booklet is unnecessary.

Qualitative Analysis Notes are printed on pages 10 and 11.

A copy of the Periodic Table is printed on page 12.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

Session
Laboratory

For Examiner's Use		
1		
2		
3		
Total		

This document consists of 12 printed pages.

Quantitative Analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

1 Iron wire contains impurities. You will investigate the percentage by mass of iron in a sample of iron wire.

A sample of iron wire is reacted with an excess of sulfuric acid to produce a solution of iron(II) sulfate.

$$Fe(s) + H_2SO_4(aq) \rightarrow FeSO_4(aq) + H_2(g)$$

You will titrate the solution of iron(II) sulfate with potassium manganate(VII) of known concentration to determine the amount of iron(II) ions present and hence the percentage by mass of iron in the wire. You may assume the impurities do not form any products that react with potassium manganate(VII).

$$5Fe^{2+}(aq) + MnO_4^{-}(aq) + 8H^{+}(aq) \rightarrow 5Fe^{3+}(aq) + Mn^{2+}(aq) + 4H_2O(I)$$

FB 1 is 0.0200 mol dm⁻³ potassium manganate(VII), KMnO₄.

FB 2 is a solution of FeSO₄ prepared by reacting 6.02 g of iron wire with sulfuric acid to make 1 dm³ of solution.

FB 3 is dilute sulfuric acid, H₂SO₄.

(a) Method

- Fill a burette with **FB 1**.
- Pipette 25.0 cm³ of FB 2 into a conical flask.
- Use the measuring cylinder to transfer 25 cm³ of **FB 3** into the conical flask.
- Perform a rough titration and record your burette readings in the space below.

The rough titre is cm³.

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make certain that any recorded results show the precision of your practical work.
- Record all of your burette readings and the volume of **FB 1** added in each accurate titration.

Keep FB 3 for use in Question 2.

Results

I	
II	
III	
IV	
V	
VI	
VII	

[7]

(b) From your accurate titration results, obtain a suitable value for the volume of **FB 1** to be used in your calculations. Show clearly how you obtained this value.

		25.0 cm ³ of FB 2 required cm ³ of FB 1 . [1
(c)	(i)	Give your answers to (ii), (iii), (iv) and (v) to the appropriate number of significant figures
	(ii)	Use your answer to (b) to calculate the number of moles of potassium manganate(VII) FB 1 , which reacted with 25.0cm^3 of FB 2 .
((iii)	moles of $MnO_4^- =$
((iv)	moles of $Fe^{2+} = \dots mol$ [1 Calculate the mass of iron present in $25.0cm^3$ of FB 2 .
	(v)	$\mbox{mass of Fe =} \ g \ [1]$ Calculate the percentage by mass of iron in the sample of iron wire.
		percentage by mass of iron in iron wire = % [1
(d)	con det	tudent suggested that when a piece of iron wire was dissolved in a known volume and acentration of sulfuric acid, the number of moles of iron that reacted with the acid could be ermined by working out how much acid was left after the reaction. The amount of excess acid lid be determined by titrating the mixture with a known concentration of sodium hydroxide.
	Exp	plain whether the student was correct.
	••••	[1 Total: 14

2 In Question 1 you used dilute sulfuric acid, FB 3. You will now determine the concentration of FB 3 by measuring the temperature of its reaction with sodium hydroxide.

$$2NaOH(aq) + H2SO4(aq) \rightarrow Na2SO4(aq) + 2H2O(I)$$

FB 4 is 0.90 mol dm⁻³ sodium hydroxide, NaOH.

(a) Method

- Fill the second burette with **FB 4**.
- Support the plastic cup in the 250 cm³ beaker.
- Pipette 10.0 cm³ of **FB 3** into the plastic cup.
- Place the thermometer into the FB 3. Tilt the cup so that the bulb of the thermometer is surrounded by solution. Record the temperature in the table below. This is the temperature of the solution before any FB 4 has been added.
- Add 5.00 cm³ of **FB 4** from the burette to the **FB 3** in the plastic cup. Stir the mixture and record the temperature reached. Record the volume of **FB 4** added.
- Add a second 5.00 cm³ portion of **FB 4** to the plastic cup, stir the mixture and record the temperature reached. Record the total volume of **FB 4** added.
- Continue adding 5.00 cm³ portions of **FB 4** until 40.00 cm³ have been added. After each addition, stir and record the temperature reached and total volume of **FB 4** added.

Results

total volume of FB 4 added/cm ³	temperature of solution/°C

[3]

(b) Plot a graph of temperature of solution on the *y*-axis against total volume of **FB 4** added on the *x*-axis. Select a scale on the *y*-axis to include a temperature of 2.0 °C above your maximum thermometer reading. Label any points you consider to be anomalous. You will use the graph to find the volume of **FB 4** needed to neutralise 10.0 cm³ of **FB 3**.

	 	
		
	 	
	 	
		+++++++++++++++++++++++++++++++++++++++
	 	+++++++++++++++++++++++++++++++++++++++
	 	+++++++++++++++++++++++++++++++++++++++
	<u> </u>	
	╂┼┼┼┼┼┼┼┼┼╂┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	+++++++++++++++++++++++++++++++++++++++
		+++++++++++++++++++++++++++++++++++++++
	┠╎╎╎╎╎╎╎╎╏╎╎╎╎╎╎╎╎╏╎╎╎╎╎╎ ┼┼┼┼┼┼┼┼┼┼┼┼┼┼	+++++++++++++++++++++++++++++++++++++
		
		+++++++++++++++++++++++++++++++++++++++
		
	 	
		+++++++++++++++++++++++++++++++++++++++
	 	+++++++++++++++++++++++++++++++++++++
<u> </u>	 	+++++++++++++++++++++++++++++++++++++++
		+++++++++++++++++++++++++++++++++++++++
	 	+++++++++++++++++++++++++++++++++++++
<u> </u>	╂┼┼┼┼┞┼┼┼┞╂┼┼┼┼┼┼┼┼┼╂┼┼┼┼┼┼┼┼┼	+++++++++++++++++++++++++++++++++++++++
		
	 	
<u> </u>	┠╎╎╎╎╎╎╎╎╎╏╎╎╎╎╎╎╎╏╎╎╎ ┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼	+++++++++++++++++++++++++++++++++++++++
	} 	
		+++++++++++++++++++++++++++++++++++++++
		+++++++++++++++++++++++++++++++++++++++

I	
II	
III	
IV	

Draw two lines of best fit through the points on your graph, the first for the increase in temperature and the second for the decrease in temperature of the mixtures. Extrapolate the two lines so they intersect and hence determine the volume of **FB 4** required to neutralise 10.0 cm³ of **FB 3**.

volume of **FB 4** = cm³ [4]

(c)	(i)	Use your answer to (b) to calculate the number of moles of sodium hydroxide required to neutralise 10.0 cm ³ of FB 3 .
	(ii)	moles of NaOH = mol [1] Calculate the number of moles of sulfuric acid present in 10.0cm^3 of FB 3 .
	(11)	Calculate the number of moles of salitane acid present in 10.0 cm of 123.
		moles of $H_2SO_4 = \dots mol$
		Hence calculate the concentration, in mol dm ⁻³ , of sulfuric acid in FB 3 .
		concentration of H_2SO_4 in FB 3 = moldm ⁻³ [1]
(d)		plain how you would use the data obtained in Question 2 to calculate the enthalpy change neutralisation of the sulfuric acid. You do not need to carry out the calculation.
		[3]
		[Total: 12]

Qualitative Analysis

Where reagents are selected for use in a test, the **name** or **correct formula** of the element or compound must be given.

At each stage of any test you are to record details of the following:

- colour changes seen;
- the formation of any precipitate and its solubility in an excess of the reagent added;
- the formation of any gas and its identification by a suitable test.

You should indicate clearly at what stage in a test a change occurs.

If any solution is warmed, a **boiling tube** must be used.

Rinse and reuse test-tubes and boiling tubes where possible.

No additional tests for ions present should be attempted.

3 (a) FB 5 is a solution of a sodium salt of an organic acid.

FB 6 and **FB 7** each contain one cation and one anion from those listed in the Qualitative Analysis Notes.

Carry out the following tests and record your observations.

Use a separate 1 cm depth of each solution in a test-tube for each test.

40.04	observations				
test	FB 5	FB 6	FB 7		
Add 2 or 3 drops of acidified potassium manganate(VII).					
If there is no visible change, pour into a boiling tube and warm gently.					
Add a 1 cm depth of dilute nitric acid, then					
add 2 or 3 drops of aqueous silver nitrate.					
Add a 1 cm depth of dilute hydrochloric acid, then					
add a 1 cm depth of aqueous barium nitrate or aqueous barium chloride.					
Add a 1 cm depth of FB 5 and leave to stand for a few minutes.					

[7]

(b) (i) Select reagents for two further tests to help identify the cations present in FB 6 and FB 7.

Record in a suitable form below the reagents you use and your observations.

i) Use your	observation	is to identify as ma	ny ions as pos	sible. Give	the formula of	the
present. V	Vrite 'unkno	wn' if you were una	ble to identify a	n ion.		
Г		FB 6	FB	3 7		
	cation					
	anion					
i) \/\/rito on	ionio ogvoti	an far any procinit	otion vocation o	من لممرسممطي	valvina ED 7	راه ما
i) Write an state sym	bols.	on for any precipit	auon reaction C	ibserveu III	ivolvilly FD 7 . I	II ICII
					[To	

Qualitative Analysis Notes

1 Reactions of aqueous cations

i	reaction with				
ion	NaOH(aq)	NH ₃ (aq)			
aluminium, A <i>l</i> ³+(aq)	white ppt. soluble in excess	white ppt. insoluble in excess			
ammonium, NH ₄ +(aq)	no ppt. ammonia produced on heating	-			
barium, Ba ²⁺ (aq)	faint white ppt. is nearly always observed unless reagents are pure	no ppt.			
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.			
chromium(III), Cr³+(aq)	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess			
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution			
iron(II), Fe²+(aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess			
iron(III), Fe³+(aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess			
magnesium, Mg ²⁺ (aq)	white ppt. insoluble in excess	white ppt. insoluble in excess			
manganese(II), Mn²+(aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess			
zinc, Zn²+(aq)	white ppt. soluble in excess	white ppt. soluble in excess			

2 Reactions of anions

ion	reaction
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chloride, C <i>l</i> ⁻ (aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq))
bromide, Br ⁻ (aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in NH ₃ (aq))
iodide, I ⁻ (aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq))
nitrate, NO ₃ ⁻ (aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil
nitrite, NO ₂ ⁻ (aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil
sulfate, SO ₄ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)
sulfite, SO ₃ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine, Cl ₂	bleaches damp litmus paper
hydrogen, H ₂	'pops' with a lighted splint
oxygen, O ₂	relights a glowing splint

The Periodic Table of Elements

	18	2	_ ტ	elium 4.0	10	Ze	neon	18	۸۲	argon 39.9	36	궃	ypton 33.8	25	×e	enon 31.3	98	٦	adon –			
			_	<u> </u>																		
	17				6	ш	fluoring	13.0	C	chlorine 35.5	35	Ŗ	bromin 79.9	53	Ι	iodine 126.9	82	At	astatin			
	16				80	0	oxygen	5.0	်	sulfur 32.1	34	Se	selenium 79.0	52	<u>e</u>	tellurium 127.6	84	Ъо	polonium -	116	۲	livermorium
	15				7	z	nitrogen	5.5	_	phosphorus 31.0	33	As	arsenic 74.9	51	Sp	antimony 121.8	83	:Ē	bismuth 209.0			
	14				9	O	carbon	14	:	silicon 28.1	32	Ge	germanium 72.6	50	Sn	tin 118.7	82	Pb	lead 207.2	114	Εl	flerovium
	13				5	В	boron	5.0	Αl	aluminium 27.0	31	Ga	gallium 69.7	49	In	indium 114.8	84	<i>1</i> 1	thallium 204.4			
										12	30	Zu	zinc 65.4	48	В	cadmium 112.4	80	БĤ	mercury 200.6	112	ပ်	copernicium
										=	29	Cu	copper 63.5	47	Ag	silver 107.9	62	Αu	gold 197.0	111	Rg	roentgenium
dn										10	28	Z	nickel 58.7	46	Pd	palladium 106.4	78	₹	platinum 195.1	110	Ds	darmstadtium -
Group										6	27	ပိ	cobalt 58.9	45	R	rhodium 102.9	77	Ϊ́	iridium 192.2	109	¥	meitnerium
		-	I	hydrogen 1.0						œ	26	Fe	iron 55.8	44	Ru	ruthenium 101.1	92	SO	osmium 190.2	108	£	hassium
					J					7	25	M	manganese 54.9	43	ည	technetium -	75	Re	rhenium 186.2	107	Bh	bohrium
		Key			Г	9	2		9	24	ပ်	chromium 52.0	42	Mo	molybdenum 95.9	74	≥	tungsten 183.8	106	Sg	seaborgium -	
			atomic number	atomic symbo	name	ve atomic max		2	23	>	vanadium 50.9	41	g	niobium 92.9	73	<u>⊾</u>	tantalum 180.9	105	90	dubnium		
					af	ator		Idia		4	22	F	titanium 47.9	40	Zr	zirconium 91.2	72	Ξ	hafnium 178.5	104	쪼	rutherfordium -
								_		3	21	Sc	scandium 45.0	39	>	yttrium 88.9	57-71	lanthanoids		89–103	actinoids	
	2				4	Be	beryllium	3:0	Ma	magnesium 24.3	20	Ca	calcium 40.1	88	Š	strontium 87.6	56	Ba	barium 137.3	88	Ra	radium
	_				8	<u></u>	lithium	5.9	Na	sodium 23.0	19	×	potassium 39.1	37	Rb	rubidium 85.5	55	S	caesium 132.9	87	ъ́	francium

71	ŋ	lutetium 175.0	103	۲	lawrencium	ı	
70	ΥÞ	ytterbium 173.1	102	%	nobelium	ı	
69	T	thulium 168.9	101	Md	mendelevium	ı	
89	ш	erbium 167.3	100	Fm	ferminm	I	
29	웃	holmium 164.9	66	Es	einsteinium	ı	
99	۵	dysprosium 162.5	86	₽	californium	I	
65	Д	terbium 158.9	26	益	berkelium	ı	
64	В	gadolinium 157.3	96	CB	curium	I	
63	En	europium 152.0	96	Am	americium	I	
62	Sm	samarium 150.4	94	Pu	plutonium	ı	
61	Pm	promethium —	93	ď	neptunium	I	
09	PN	neodymium 144.4	92	\supset	uranium	238.0	
59	Ā	praseodymium 140.9	91	Ра	protactinium	231.0	
58	Se	cerium 140.1	06	Ļ	thorium	232.0	
22	La	lanthanum 138.9	89	Ac	actinium	ı	

lanthanoids actinoids

acti

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.